extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C22⋊Q8)⋊1C2 = D12.36D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):1C2 | 192,605 |
(C3×C22⋊Q8)⋊2C2 = D12.37D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):2C2 | 192,606 |
(C3×C22⋊Q8)⋊3C2 = C3⋊C8⋊24D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):3C2 | 192,607 |
(C3×C22⋊Q8)⋊4C2 = C3⋊C8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):4C2 | 192,608 |
(C3×C22⋊Q8)⋊5C2 = C4⋊C4.187D6 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):5C2 | 192,1183 |
(C3×C22⋊Q8)⋊6C2 = S3×C22⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):6C2 | 192,1185 |
(C3×C22⋊Q8)⋊7C2 = C4⋊C4⋊26D6 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):7C2 | 192,1186 |
(C3×C22⋊Q8)⋊8C2 = C6.162- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):8C2 | 192,1187 |
(C3×C22⋊Q8)⋊9C2 = C6.172- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):9C2 | 192,1188 |
(C3×C22⋊Q8)⋊10C2 = D12⋊21D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):10C2 | 192,1189 |
(C3×C22⋊Q8)⋊11C2 = D12⋊22D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):11C2 | 192,1190 |
(C3×C22⋊Q8)⋊12C2 = Dic6⋊21D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):12C2 | 192,1191 |
(C3×C22⋊Q8)⋊13C2 = Dic6⋊22D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):13C2 | 192,1192 |
(C3×C22⋊Q8)⋊14C2 = C6.512+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):14C2 | 192,1193 |
(C3×C22⋊Q8)⋊15C2 = C6.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):15C2 | 192,1194 |
(C3×C22⋊Q8)⋊16C2 = C6.522+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):16C2 | 192,1195 |
(C3×C22⋊Q8)⋊17C2 = C6.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):17C2 | 192,1196 |
(C3×C22⋊Q8)⋊18C2 = C6.202- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):18C2 | 192,1197 |
(C3×C22⋊Q8)⋊19C2 = C6.212- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):19C2 | 192,1198 |
(C3×C22⋊Q8)⋊20C2 = C6.222- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):20C2 | 192,1199 |
(C3×C22⋊Q8)⋊21C2 = C6.232- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):21C2 | 192,1200 |
(C3×C22⋊Q8)⋊22C2 = C6.772- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):22C2 | 192,1201 |
(C3×C22⋊Q8)⋊23C2 = C6.242- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):23C2 | 192,1202 |
(C3×C22⋊Q8)⋊24C2 = C6.562+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):24C2 | 192,1203 |
(C3×C22⋊Q8)⋊25C2 = C6.782- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):25C2 | 192,1204 |
(C3×C22⋊Q8)⋊26C2 = C6.252- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):26C2 | 192,1205 |
(C3×C22⋊Q8)⋊27C2 = C6.592+ 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):27C2 | 192,1206 |
(C3×C22⋊Q8)⋊28C2 = C3×C22⋊SD16 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):28C2 | 192,883 |
(C3×C22⋊Q8)⋊29C2 = C3×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):29C2 | 192,885 |
(C3×C22⋊Q8)⋊30C2 = C3×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):30C2 | 192,898 |
(C3×C22⋊Q8)⋊31C2 = C3×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):31C2 | 192,901 |
(C3×C22⋊Q8)⋊32C2 = C3×C23.38C23 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):32C2 | 192,1425 |
(C3×C22⋊Q8)⋊33C2 = C3×C22.31C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):33C2 | 192,1426 |
(C3×C22⋊Q8)⋊34C2 = C3×C22.32C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):34C2 | 192,1427 |
(C3×C22⋊Q8)⋊35C2 = C3×C22.33C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):35C2 | 192,1428 |
(C3×C22⋊Q8)⋊36C2 = C3×C22.36C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):36C2 | 192,1431 |
(C3×C22⋊Q8)⋊37C2 = C3×C23⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):37C2 | 192,1432 |
(C3×C22⋊Q8)⋊38C2 = C3×D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):38C2 | 192,1435 |
(C3×C22⋊Q8)⋊39C2 = C3×D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):39C2 | 192,1436 |
(C3×C22⋊Q8)⋊40C2 = C3×Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):40C2 | 192,1437 |
(C3×C22⋊Q8)⋊41C2 = C3×D4×Q8 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):41C2 | 192,1438 |
(C3×C22⋊Q8)⋊42C2 = C3×C22.45C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8):42C2 | 192,1440 |
(C3×C22⋊Q8)⋊43C2 = C3×C22.46C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):43C2 | 192,1441 |
(C3×C22⋊Q8)⋊44C2 = C3×D4⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):44C2 | 192,1443 |
(C3×C22⋊Q8)⋊45C2 = C3×C22.50C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):45C2 | 192,1445 |
(C3×C22⋊Q8)⋊46C2 = C3×C22.56C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):46C2 | 192,1451 |
(C3×C22⋊Q8)⋊47C2 = C3×C22.57C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8):47C2 | 192,1452 |
(C3×C22⋊Q8)⋊48C2 = C3×C22.19C24 | φ: trivial image | 48 | | (C3xC2^2:Q8):48C2 | 192,1414 |
(C3×C22⋊Q8)⋊49C2 = C3×C23.36C23 | φ: trivial image | 96 | | (C3xC2^2:Q8):49C2 | 192,1418 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C22⋊Q8).1C2 = (C2×Q8).49D6 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).1C2 | 192,602 |
(C3×C22⋊Q8).2C2 = (C2×C6).Q16 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).2C2 | 192,603 |
(C3×C22⋊Q8).3C2 = (C2×Q8).51D6 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).3C2 | 192,604 |
(C3×C22⋊Q8).4C2 = Dic6.37D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).4C2 | 192,609 |
(C3×C22⋊Q8).5C2 = C3⋊C8.29D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).5C2 | 192,610 |
(C3×C22⋊Q8).6C2 = C3⋊C8.6D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).6C2 | 192,611 |
(C3×C22⋊Q8).7C2 = (Q8×Dic3)⋊C2 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).7C2 | 192,1181 |
(C3×C22⋊Q8).8C2 = C6.752- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).8C2 | 192,1182 |
(C3×C22⋊Q8).9C2 = C6.152- 1+4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).9C2 | 192,1184 |
(C3×C22⋊Q8).10C2 = (C6×Q8)⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8).10C2 | 192,97 |
(C3×C22⋊Q8).11C2 = C3×C23.31D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 48 | | (C3xC2^2:Q8).11C2 | 192,134 |
(C3×C22⋊Q8).12C2 = C3×C22⋊Q16 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).12C2 | 192,884 |
(C3×C22⋊Q8).13C2 = C3×C8.18D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).13C2 | 192,900 |
(C3×C22⋊Q8).14C2 = C3×C8.D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).14C2 | 192,903 |
(C3×C22⋊Q8).15C2 = C3×C23.47D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).15C2 | 192,916 |
(C3×C22⋊Q8).16C2 = C3×C23.48D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).16C2 | 192,917 |
(C3×C22⋊Q8).17C2 = C3×C23.20D4 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).17C2 | 192,918 |
(C3×C22⋊Q8).18C2 = C3×C22.35C24 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).18C2 | 192,1430 |
(C3×C22⋊Q8).19C2 = C3×C23.41C23 | φ: C2/C1 → C2 ⊆ Out C3×C22⋊Q8 | 96 | | (C3xC2^2:Q8).19C2 | 192,1433 |
(C3×C22⋊Q8).20C2 = C3×C23.37C23 | φ: trivial image | 96 | | (C3xC2^2:Q8).20C2 | 192,1422 |