Extensions 1→N→G→Q→1 with N=C3×C22⋊Q8 and Q=C2

Direct product G=N×Q with N=C3×C22⋊Q8 and Q=C2
dρLabelID
C6×C22⋊Q896C6xC2^2:Q8192,1412

Semidirect products G=N:Q with N=C3×C22⋊Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C22⋊Q8)⋊1C2 = D12.36D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):1C2192,605
(C3×C22⋊Q8)⋊2C2 = D12.37D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):2C2192,606
(C3×C22⋊Q8)⋊3C2 = C3⋊C824D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):3C2192,607
(C3×C22⋊Q8)⋊4C2 = C3⋊C86D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):4C2192,608
(C3×C22⋊Q8)⋊5C2 = C4⋊C4.187D6φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):5C2192,1183
(C3×C22⋊Q8)⋊6C2 = S3×C22⋊Q8φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):6C2192,1185
(C3×C22⋊Q8)⋊7C2 = C4⋊C426D6φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):7C2192,1186
(C3×C22⋊Q8)⋊8C2 = C6.162- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):8C2192,1187
(C3×C22⋊Q8)⋊9C2 = C6.172- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):9C2192,1188
(C3×C22⋊Q8)⋊10C2 = D1221D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):10C2192,1189
(C3×C22⋊Q8)⋊11C2 = D1222D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):11C2192,1190
(C3×C22⋊Q8)⋊12C2 = Dic621D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):12C2192,1191
(C3×C22⋊Q8)⋊13C2 = Dic622D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):13C2192,1192
(C3×C22⋊Q8)⋊14C2 = C6.512+ 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):14C2192,1193
(C3×C22⋊Q8)⋊15C2 = C6.1182+ 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):15C2192,1194
(C3×C22⋊Q8)⋊16C2 = C6.522+ 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):16C2192,1195
(C3×C22⋊Q8)⋊17C2 = C6.532+ 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):17C2192,1196
(C3×C22⋊Q8)⋊18C2 = C6.202- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):18C2192,1197
(C3×C22⋊Q8)⋊19C2 = C6.212- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):19C2192,1198
(C3×C22⋊Q8)⋊20C2 = C6.222- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):20C2192,1199
(C3×C22⋊Q8)⋊21C2 = C6.232- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):21C2192,1200
(C3×C22⋊Q8)⋊22C2 = C6.772- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):22C2192,1201
(C3×C22⋊Q8)⋊23C2 = C6.242- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):23C2192,1202
(C3×C22⋊Q8)⋊24C2 = C6.562+ 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):24C2192,1203
(C3×C22⋊Q8)⋊25C2 = C6.782- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):25C2192,1204
(C3×C22⋊Q8)⋊26C2 = C6.252- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):26C2192,1205
(C3×C22⋊Q8)⋊27C2 = C6.592+ 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):27C2192,1206
(C3×C22⋊Q8)⋊28C2 = C3×C22⋊SD16φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):28C2192,883
(C3×C22⋊Q8)⋊29C2 = C3×D4.7D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):29C2192,885
(C3×C22⋊Q8)⋊30C2 = C3×C88D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):30C2192,898
(C3×C22⋊Q8)⋊31C2 = C3×C8⋊D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):31C2192,901
(C3×C22⋊Q8)⋊32C2 = C3×C23.38C23φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):32C2192,1425
(C3×C22⋊Q8)⋊33C2 = C3×C22.31C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):33C2192,1426
(C3×C22⋊Q8)⋊34C2 = C3×C22.32C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):34C2192,1427
(C3×C22⋊Q8)⋊35C2 = C3×C22.33C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):35C2192,1428
(C3×C22⋊Q8)⋊36C2 = C3×C22.36C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):36C2192,1431
(C3×C22⋊Q8)⋊37C2 = C3×C232Q8φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):37C2192,1432
(C3×C22⋊Q8)⋊38C2 = C3×D45D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):38C2192,1435
(C3×C22⋊Q8)⋊39C2 = C3×D46D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):39C2192,1436
(C3×C22⋊Q8)⋊40C2 = C3×Q85D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):40C2192,1437
(C3×C22⋊Q8)⋊41C2 = C3×D4×Q8φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):41C2192,1438
(C3×C22⋊Q8)⋊42C2 = C3×C22.45C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8):42C2192,1440
(C3×C22⋊Q8)⋊43C2 = C3×C22.46C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):43C2192,1441
(C3×C22⋊Q8)⋊44C2 = C3×D43Q8φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):44C2192,1443
(C3×C22⋊Q8)⋊45C2 = C3×C22.50C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):45C2192,1445
(C3×C22⋊Q8)⋊46C2 = C3×C22.56C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):46C2192,1451
(C3×C22⋊Q8)⋊47C2 = C3×C22.57C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8):47C2192,1452
(C3×C22⋊Q8)⋊48C2 = C3×C22.19C24φ: trivial image48(C3xC2^2:Q8):48C2192,1414
(C3×C22⋊Q8)⋊49C2 = C3×C23.36C23φ: trivial image96(C3xC2^2:Q8):49C2192,1418

Non-split extensions G=N.Q with N=C3×C22⋊Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C22⋊Q8).1C2 = (C2×Q8).49D6φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).1C2192,602
(C3×C22⋊Q8).2C2 = (C2×C6).Q16φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).2C2192,603
(C3×C22⋊Q8).3C2 = (C2×Q8).51D6φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).3C2192,604
(C3×C22⋊Q8).4C2 = Dic6.37D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).4C2192,609
(C3×C22⋊Q8).5C2 = C3⋊C8.29D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).5C2192,610
(C3×C22⋊Q8).6C2 = C3⋊C8.6D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).6C2192,611
(C3×C22⋊Q8).7C2 = (Q8×Dic3)⋊C2φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).7C2192,1181
(C3×C22⋊Q8).8C2 = C6.752- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).8C2192,1182
(C3×C22⋊Q8).9C2 = C6.152- 1+4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).9C2192,1184
(C3×C22⋊Q8).10C2 = (C6×Q8)⋊C4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8).10C2192,97
(C3×C22⋊Q8).11C2 = C3×C23.31D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q848(C3xC2^2:Q8).11C2192,134
(C3×C22⋊Q8).12C2 = C3×C22⋊Q16φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).12C2192,884
(C3×C22⋊Q8).13C2 = C3×C8.18D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).13C2192,900
(C3×C22⋊Q8).14C2 = C3×C8.D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).14C2192,903
(C3×C22⋊Q8).15C2 = C3×C23.47D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).15C2192,916
(C3×C22⋊Q8).16C2 = C3×C23.48D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).16C2192,917
(C3×C22⋊Q8).17C2 = C3×C23.20D4φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).17C2192,918
(C3×C22⋊Q8).18C2 = C3×C22.35C24φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).18C2192,1430
(C3×C22⋊Q8).19C2 = C3×C23.41C23φ: C2/C1C2 ⊆ Out C3×C22⋊Q896(C3xC2^2:Q8).19C2192,1433
(C3×C22⋊Q8).20C2 = C3×C23.37C23φ: trivial image96(C3xC2^2:Q8).20C2192,1422

׿
×
𝔽